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A N  A D D I T I V I T Y  P R I N C I P L E  F O R  
G O L D I E  R A N K  t 

BY 

A. JOSEPH AND L. W. SMALL 

ABSTRACT 

Let A be a noetherian ring. In general A will not admit a classical Artinian ring 
of quotients. Yet a problem in enveloping algebras leads one to consider the 
possible embedding of A in a prime ring B which is finitely generated as a left 
and a right A module. Under certain additional technical assumptions, it is 
shown that the set S of regular elements of A is regular in B and is an Ore set in 
both A and B with S ~A and S-IB Artinian. This enables one to establish the 
following additivity principle for Goldie rank. Let {P~, P2," ' ", P,} be the set of 
minimal primes of A. Then under the above conditions it is shown that there 
exist positive integers z~, z2, . ' . ,  z, such that 

~ z~rk(A/P~)=rkB, 

where rk denotes Goldie rank. This applies to the study of primitive ideals in the 
enveloping algebra of a complex semisimple Lie algebra. 

1. Introduction 

Let  g be  a c o m p l e x  s e m i s i m p l e  L ie  a lgeb ra ,  U ( g )  its e n v e l o p i n g  a lgeb ra ,  Z ( g )  

t he  c e n t r e  of  U ( g ) ,  P r i m  U ( g )  t he  p r i m i t i v e  s p e c t r u m  of  U ( g )  and  ~':  I m I fq 

Z ( g )  t h e  p r o j e c t i o n  of  P r i m  U ( g )  o n t o  M a x  Z ( g ) .  T h e  p r o b l e m  of  c lass i fy ing  

P r i m  U ( g )  a n d  in p a r t i c u l a r  t he  J a n t z e n  c o n j e c t u r e  [1], 5.9, m.o t iva te  [6], 11,1 an 

add i t iv i ty  p r inc ip l e  fo r  G o i d i e  rank .**Our  m a i n  resu l t ,  T h e o r e m  3.9, e s t ab l i shes  

such a p r inc ip l e  in a f o r m  su i t ab le  fo r  a p p l i c a t i o n  to  e n v e l o p i n g  a lgebras .  I n d e e d  

' This paper was written while the authors were guests of the Institute for Advanced Studies, The 
Hebrew University of Jerusalem. The first author was on leave of absence from the Centre Nationale 
de la Recherche Scientifique, France. 

" Also referred to as Goldie dimension, though the former terminology is more common in 
enveloping algebras. 
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when suitably combined with the methods of [6], it gives [7] a strong lower 

bound on the cardinality of each Prim U(g) fibre relative to zr. For g simple of 

type Am (Cartan notation) this coincides with Duflo's upper bound [4], prop. 9, 

and establishes Jantzen's conjecture in the form described in [6], 10.3. 

The content of this paper and its implications for the Jantzen conjecture were 

reported at a meeting on enveloping algebras at Oberwolfach, 5-10 February 

1978. The authors would like to thank J. C. McConnell for his careful reading of 

the original manuscript. 

2. Gel fand-Kir i l lov  d imens ion  and Artinian rings of quotients  

2.1. Let F be a commutative field and A a finitely generated F-algebra 

with identity 1. Fix a finite dimensional generating subspace V of A. For each 

k E N +, let V k denote the subspace of A spanned by the monomials 

Vzv2"''Vk:V~E V and define a filtration A ~  1 C A 2 C . . . ,  on A through 

A ~  F, A k = V +  V2+ . . .  + V k. Given M a finitely generated left A module, 

let M ~ denote  a finite dimensional generating subspace and define a filtration 

M ~  ~ C M  2 C . . . ,  on M through M k = A k M ~  Define the left 

Gelfand-Kirillov dimension dA (M) of M through 

- -  log dimzM k 
dA (M) : = ~lim~ log k 

(In particular dA ( M ) =  - ~  if M = 0.) 

It is elementary and well-known that dA (M) does not depend on the choice of 

generating subspaces V, M ~ as is also the following 

LEMMA. Let M,M~,M2, . .  ",Mr be finitely generated left A modules, B an 

F-algebra containing A and finitely generated as a left A module. Then 

(i) d~ (M) = sup, dA (M~), given M = M~ + M2 + "" �9 + M,. 

(ii) dA (A)  -> dA (M), for A considered as a left A module. 

(iii) dA (M) >= dA (M~) for any subquotient M~ of M. 

(iv) d A ( L ) =  > dA(Lb) for any b ~ B and any finitely generated A module L of 

B. Equality holds if xb = 0: x ~ L implies x = O. 

(v) If I is an ideal of A contained in Ann M, then dA/,(M) = dA(M). 

If M is a right A module we can similarly define the right Gelfand-Kirillov 

dimension d,~(M) of M. As A will be fixed throughout and because of (v) we 

shall generally drop the subscripts. 

For any F-algebra C and any subset T of C we let I t (T)  (resp. re(T)) denote 
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the left (resp. right) annihi la tor  of T in C. For  the F -a lgeb ra  A we d rop  the 

subscript .  

2.2, Def ine  A, B as in 2.1 and f rom now on assume that  A is (left and right) 

Noe the r ian  and that  B is finitely gene ra t ed  as a left and right A module .  Call B 

left smooth if d,~ (B)  = d,~ (L)  for  every non-zero  left ideal L of B, Since B is left 

Noe the r ian  it is enough  by 2.1 (i) to assume this p rope r ty  for  two-s ided ideals. 

We  may similarly define B to be  right smooth .  

LEMMA. SUppose B is left smooth. Let I be an ideal of B. Then 

(i) B/IB(I) is left smooth. 

(ii) If I ~  O, then d(B/IB(I))--  d(B) .  

(iii) If K is a left ideal of t:3 satisfying d ( B / K ) <  d(B),  then K is essential. 

Since B is right Noe the r i an  we can write 

I = ~ a~B : a~ @ I. 
i - 1  

Then  lB(I) = A 1B(a~) and the  m a p  x + l(I)  ~ (xa,, xa2 , . . . ,  xa,)  of B/ I ( I )  into 

(Ba~, Ba2,- �9 ", Ba, )  is injeetive.  Now if L + I(I) is a non-zero  left ideal of  B/ l ( I ) ,  

then L a ~ O  for  some  i and is a left ideal of  B. This  by 2.1 (i), (iii) and 

smoothness  gives: d(B/ l ( l ) )  >= d(L / l ( l ) )  >= d(La~) = d(B)->_ d(B/ l ( I ) ) .  H e n c e  

(i), (ii). 
If K f ' /L  = 0, for  some left ideal L of B, then L e m b e d s  in B / K  and so by 2.1 

(iii): d (L )  _-< d ( B / K )  < d(B) .  Smoothness  implies L = 0 and so gives (iii). 

2.3 LEMMA. Let B be a prime ring. Then B is left smooth. 

Let  L be a non-zero  left ideal of B. Since B is p r ime Noether ian ,  there  exist 

a~, a2 , ' "  ", a ,  ~ B such that  K :  = ELa~ is an essential  left ideal of B. By 2.1 (i), 

(ii), (iv) one has d ( K ) =  supd(La , )=< d(L)_-< d(B) ,  so it is enough to p rove  the 

assert ion for L essential.  Choose  a C L such that  18(a) = 0. Then  by 2.1 (iii), 

(iv): d ( L )  _-> d(Ba) = d(B) ,  as required.  

REMARK. The  assert ion clearly fails for  semipr ime  rings. 

2.4. F rom now on let {P,, P2, �9 �9 ", Pr} deno te  the set of minimal  pr imes  of A 

and N:  = O P~ the nilradical of A. One  has N '  = 0 for  some  posi t ive integer  s. 

LEMMA. Let P be a minimal prime of A. Then there exist ideals I, J of A such 

that IJ / 0 and IPJ = O. 

Obse rve  that  (P1P2""Pr) S= 0 and choose  a p roduc t  of the P, of minimal  
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length which vanishes. Each P~ must occur in this product for otherwise Pk C P, 

for some k # i. From this one obtains a suitable choice of I, J. 

REMARKS. This is a weak form of an unpublished result of Kaplansky which 

further asserts that we can choose I, J so that P = {a E A : IaJ = 0}. Note also 

that there is always at least one minimal prime P for which l ( P ) #  O. 

2.5 LEMMA. Suppose a E A satisfies l ( a ) = O. Then 

(i) d ( A / A a ) < = d ( J )  - 1. 

(ii) If  A is left smooth and d ( A ) <  ~, then a is regular. 

The proof of (i) exactly follows that of [2], 3.4. 

(ii) Choose b E r(a). Then Ab is isomorphic to a subquotient of A / A a  so by 

(i) and 2.1 (iii) we obtain d ( A b ) < = d ( A / A a ) < d ( A ) .  By left smoothness this 

gives Ab --0 and hence r ( a ) =  0, as required. 

2.6. From now on we shall assume that d ( A ) <  ~. Suppose that A is left 

smooth. Call A hi-smooth if d ( I / J ) =  d ' ( l /J)  for all ideals I,J: ~ J  of A. This 

"two-sided" property trivially translates to quotients and so by 2.2 (i) if A is 

bi-smooth, then so is A / l ( I ) ,  for any ideal I. We shall see in 3.1 that this 

two-sided property holds for the enveloping algebra of a finite dimensional Lie 

algebra. Again from 2.2 we see that a bi-smooth ring is right smooth. 

PROPOSITION. Suppose A is bi-smooth. Then 

(i) d ( A / P )  = d(A),  for each minimal prime P of A. 

(ii) If L is a left ideal of A satisfying d(A/L  ) < d(A ), then L / ( L  fq N)  contains 

a regular element of A / N .  

(iii) Suppose N #  O. If P' is a minimal prime of A / l ( N ) ,  then its inverse image 

0 is a minimal prime of A. 

(i) Pick I, J as in the conclusion of 2.4. Let r (resp./5) denote the image of I 

(resp. P)  in A/ l ( J ) .  Then I-/5 = 0 and so 1 considered as a finitely generated right 

A / P  module satisfies d '(I)  ~ d ' (A/P)  <= d ' (A/P) ,  by 2.1 (ii). Now U t  0, so r g  0 

and J #  0 and since A is left smooth, 2.2 (i), (ii) gives d ( ] ) - -  d ( A / l ( J ) ) =  d(A). 

By the two-sidedness property, this and our previous inequality gives (i). 

(ii) Let P be a minimal prime of A and let /S denote the image of L in A/P.  

Since d (A/L  ) <-_ d ( A / L )  < d(A ) by hypothesis, it follows from (i), 2.2 (iii) and 2.3 

that/~ is an essential left ideal of the prime ring A/P.  This gives r (L)  C P and so 

r ( L ) C  N. Hence L/ (L  7~N) is essential in A / N  and so contains a regular 

element of the semiprime ring A / N .  

(iii) O is a prime ideal of A. Suppose it contains strictly some minimal prime 
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P of A. Then Q / P  contains a regular element a of A / P  and so by 2.1 (iii), 2.5 (i) 

one obtains d ( A / Q )  <-<_ d ( A / A a )  < d(A ). Yet if N ~ 0, then by (i) and 2.2 (i), (ii): 

d ( A / Q )  = d ( (A/ I (N)) /P ' )  = d (A/ l (N) )  = d(A)  and this contradiction proves 

(iii). 

REMARK. By (iii) the radical X/l(N)  of l (N) is an intersection of minimal 

primes of N and either 

(a) A / l ( N )  has strictly less minimal primes than A, or 

(b) l (N)  C N and the index of nilpotence of the nilradical of A / l ( N )  is strictly 

less than that of N. 

2.7. From now on let S denote the set of regular elements of A. 

THEOREM. Let A be a bi-smooth Noetherian F-algebra satisfying d ( A ) <  0o. 

Then S is an Ore set in A and the ring of quotients S - ' A  is Artinian with 
nilradical S-'.  

By [8] a Noetherian ring A admits a classical Artinian ring of quotients iff for 

each a E A with a + N regular in A / N  one has a regular in A. By the remark of 

2.6 and the fact that A / I ( N )  is bi-smooth we may prove this by induction on the 

number of minimal primes and on the index of nilpotence. Thus we are reduced 

to proving that A satisfies the conclusion of the theorem given that A / l ( N )  
does. Set 

I: = { n @ N: sn = 0 for some s + l ( N ) regular in A / I ( N )}. 

Since N is a left A / l ( N )  module, it follows from the left Ore condition in 

A / I ( N )  that I is an ideal of A (contained in N). Now A is right Noetherian,  so 

we may write 

I = ~  n~A:n, E I ,  
i = 1  

and then again by the left Ore condition in A / I ( N )  there exists some t + l (N) 

regular in A / I ( N )  such that tl = 0. Then by 2.1 (iii), 2.5 (i) it follows that 

d (A/ l ( I ) )  <-_ d((A/l  (N))/(At + l( N))/ l(N))  < d(A It(N)) <-_ d(A ). 

Then by 2.2 (ii), I = 0 .  Suppose a + N  is regular in A / N .  Then r ( A ) C N .  

Furthermore a + k / l ( N )  is regular in A / k / l ( N )  and so a + l(N) is regular in 

A / I ( N ) ,  by the induction hypothesis. Hence r (a )  = 0 and so a is regular by 2.5 

(ii), with left replaced by right. 

2.8. Retain the notation and hypotheses of 2.7. By 2.6 (ii) 
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COROLLARY. Let L be a left ideal of A satisfying d ( A / L ) <  d(A),  then 

L n S ~ Q .  

3. The additivity principle 

3.1. Let a be a finite dimensional F-Lie  algebra and let U(a) denote its 

enveloping algebra. In this section we take A to be a quotient of U(a). Then A 

admits an identity 1, is Noetherian, finitely generated and by 2.1 (iii), [2], 5.4: 

d(A)_-< d(U(a)) = dima < 2. We let B denote an F-algebra containing A as a 

subalgebra so that 1 is also the identity of B. Through the principal an- 

tiautomorphism, U(a) is isomorphic to its opposite algebra and we note that B is 

defined as a left and as a right U(a) module (and hence as a U: = U(a )@ U(a) 

module). Given X ~ a, b E B, write (ad X)b  : = Xb - bX and let (ada)b denote 

the F subspace of B generated by the (adX)b:  X ~ a. Call b E B, locally ada  

finite if 

dimv (,_~o (ada)'b) < ~. 

Obviously each a E A is locally ad a finite. We shall assume (and this imposes a 

strong condition on A)  that B satisfies 

(a) Every b ~ B is locally ad a finite. 

(b) B is finitely generated as a U module. 

(c) B is a prime ring. 

As noted in [6], 2.3, it follows from (a), (b) that B is finitely generated both as 

a left and as a right U(a) module and is hence a Noetherian ring. Again by [6], 

2.3, we have the 

LEMMA. Consider B as a U module. If V is a subquotient of B then considered 

respectively as a left and as a right U(a) module it satisfies d(V) = d'(V). 

REMARK. The U submodules of A are just its ideals. 

EXAMPLE. Let g be a complex semisimple Lie algebra, p a parabolic 

sub-algebra of g and V a finite dimensional simple U(p) module. Let M denote 

the. U(g) module induced from V and set 1 = Ann M, A = U(g)/L Consider 

Homc(M,  M) as a U(g)@ U(g) module [6], 3.2, and let B denote the subalgebra 

of Homc(M,  M) of all adg finite elements. Then B is a U(O)Q U(g) submodule 

of Homc(M,  M) containing A as a subalgebra. By [6], 4.3 (i), B is finitely 

generated as a U(g)~)  U(g) module and by [6], 4.8 (ii) it is a prime ring. Finally 

rk B = dim V, [6], 5.10. 
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3.2 LEMMA. Suppose b E B satifies IB(b) = 0 (resp. rB(b) = 0). Then 

d(U/Bb) <= d ( B ) -  1 (resp. d'(U/bB) <= d ' ( B ) -  1). 

Both parts are similar and we consider only the first. Let B ~ be a finite 

dimensional generating subspace for B considered as a left A module. Then B~ 

is a finite dimensional generating subspace for Bb and we can choose t E N such 

that B~ CA 'B" .  Then for all integers k _-> t we have (A ~ 'B~ C A ~ B  ~ and 

since /B(b)=0 ,  one has dim(Ak- 'B~ = dim(A~-'B~ Set f ( k ) =  d imAkB ~ 

Then 

whereas by our first observation 

d(B/Bb)  <= iim log (f(k ) - f (k  - t)) 
k- ,  log k 

Now for k sufficiently large, f ( k )  is polynomial in k (the Hilbert-Samuei 

polynomial, see [6], 2.1, for example) and d e g f = d ( B ) .  If deg f_ -  > 1, then 

d(B/Bb)  <= deg f - 1, as required. Otherwise B must be finite dimensional over F 

and so B = Bb, which establishes the assertion in this case. 

3.3 LEMMA. Let M be a left U(a) submodule of A. Then 

(i) d(MU(a)) = d(A).  

(ii) d ( M B ) =  d(M). 

Let V denote the map of a ( ~ A  in U(a) and M ~ a finite dimensional 

generating subspace for M. By hypothesis 3.1 (a) there exists t ~ N such that 

(ada)*M ~  ~ (ada)kM ~ 
k =O k =O 

Since M is a left U(a) module it follows that MU(a)= MV '  and so (i) follows 

from 2.1 (i), (iv). Since B is finitely generated as a left U(a) module, (ii) similarly 

follows from (i). 

3.4. Recall (hypothesis 3.1 (c)) that B is assumed prime and is a Noetherian 

ring. 

LEMMA. If b @ B satisfies d '(B/rB(b))<d'(B),  then b = O. 

Obviously 2.2, 2.3 hold with left replaced by right. Then by 2.3 it follows that B 

is right smooth and by 2.2 (iii) that rB(b) is an essential right ideal of B and so 

contains a regular element. This gives b --0, as required. 
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3.5 PROPOSITION. Fix a E A.  The following three assertions are equivalent: 

(i) l (a)  = O. (Recall that l(a)= IA(a).) 
(ii) r(a)= O. 
(iii) a is regular in B. 

Since B is prime Noetherian it suffices to show that l (a)  = 0 implies re(a) = O. 

Choose b E B such that ab = 0. Then A b  = A / l ( b )  up to an isomorphism of left 

A modules and so d(Ab)  = d (A/ l  (b)) =< d ( A / A a )  < d(A ) by the hypothesis, 2.1 

(iii), 2.5 (i). Taking M = A b  in 3.3 gives d(Ab) = d ( A b B ) =  d'(AbB)>-_ d'(bB), 

by 3.1 and 2.1 (iii). Yet bB = B/rB(b),  up to an isomorphism of right B modules 

and so d' (B/r(b))  < d(A)  _-< d ' (B) by 3.1 and 2.1 (iii). From 3.4 this gives b = 0, as 

required. 

REMARK. The proposition fails if 1 ~ A is not the identity of B. This was 

needed for the isomorphism A b  = A / l ( b ) .  

3.6 LEMMA. (i) A is bi-smooth. 

(ii) Let K be an essential left (or right) ideal of  B. 

Then L : = A fq K contains a regular element of A.  

(i) By 3.1 it suffices to prove that A is left smooth. Recalling that B is prime 

this follows from 3.3 (ii) and 2.3. 

(ii) Since B is a prime ring it follows that K admits a regular element b of B. 

Then from 2.1 (iii), 3.2 and 3.3: d ( A / L )  <-_ d ( B / K )  < d(B) = d(A ). Combined 

with 2.8, this gives (ii). 

3.7. Let S denote the set of regular elements of A and Fract B the classical 

ring of quotients of B (which is simple and Artinian). By 3.5, S is contained in 

the set of regular elements of B. 

COROLLARY. (i) S is an Ore set in A and S - ' A  is Artinian. 

(ii) S is an Ore set in B and S-~ B = Fract B. 

By 2.7 and 3.6 (i) it remains to prove (ii). Consider for example the left Ore 

condition. Given s E S, b ~ B, set K = {c E B : cb ~ Bs}. Since s is also regular 

in B a standard argument shows that K is an essential left ideal of B. Then by 3.6 

(ii), we obtain K f3 S ~  O and this establishes the first part of (ii). Finally given t 

regular in B, then Bt  is an essential left ideal of B and so by 3.6 (ii) there exists 

b E B such that s: = bt E A .  Hence t is invertible in S-1B which proves the 

second part of (ii). 

3.8. Given ~ a prime Noetherian ring we recall that the Goldie rank rk ~ of 
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is just the m a x i m u m  n u m b e r  of direct s u m m a n d s  of left (or right) ideals of ~ .  

Given  K a left ~ module  we let rk K deno te  the m a x i m u m  n u m b e r  of direct  

s u m m a n d s  of left ~ submodu les  of K. Given  e E ~ a project ion we r emark  that  

e ~ e  is a p r ime Noe the r i an  ring and rk e ~ e  = rk ~3e. Let  M be a Art in ian  subring 

of ~ with identi ty 1 and assume that  1 is also the identi ty of 5~. Let  

{Oz, 02, �9 �9 ", Or} deno te  the set of (minimal)  pr imes  of M and ~( its nilradical. We  

may write Q,/?C'=M/N ( ] - - ~ , ) :  i = l , 2 , . . . r ,  where  { . G , . G , ' " , ~ r )  is the 

maximal  set of pairwise o r thogona l  minimal  central  pro jec t ions  of M: = M/N. 

By [5], sect. 8, prop.  5, there  exists a set {e,, e 2 , "  ", er} of pairwise o r thogona l  

pro jec t ions  of M satisfying e ~ -  x~ ~ g" for  all i, and Xe, = 1. 

LEMMA. For all i=  l , 2 , . " , r  

(i) z, : = (rk~Je~)lrk (MIQ,) E N +. 

(ii) E~=, z, rk(MIQ,) = rk ~ .  

F rom ~ = �9 ~ e  we obtain  (ii). For  (i) note  that  e,Me, has nilradical g'e, and is 

an Art inian subring of the pr ime ring e,~e~ with identi ty e~. Then  through the 

algebra i somorph i sms  (e~Me~)/~re~ = (M/X)x~ = d/O~ it suffices to establish (i) in 

the case r = 1. 

Let {y,, Y2,'" ", )L} be a maximal  set of pairwise o r thogona l  minimal  projec-  

tions of M/X. By [5], sect. 8, prop.  5 there  exists a set { / , , /2 , . -  ",/s} of pairwise 

o r thogona l  pro jec t ions  of M satisfying f , -  y, E N for  all i, and E/~ = 1. Yet  

s = r k M / X  and the left M / X  modules  (M/X)y~: i= 1 , 2 , . . . , s  are pairwise 

isomorphic .  By [5], sect. 8, prop.  1, the M/, : i = 1, 2, �9 �9 s are pairwise i somor-  

phic left M modules .  Since M is a subring of ~ it follows f rom [5]. sect. 7, prop.  

4, that  the ~ f , : i  = 1 , 2 , . . . , s  are pairwise i somorphic  left ~ modules .  F rom 

= O ~ we then obtain 

rk ~ = 2 rk (~ f , )  = s (rk ~fz),  
i = 1  

which establ ishes (i). 

3.9 THEOREM. Let A be a quotient of the enveloping algebra U(a) of a finite 

dimensional F-Lie algebra a. Assume that A embeds in a prime ring B with 

identity 1 E A which is a finitely generated U ( a ) @  U(a) module of locally ad a 

finite elements. Let {P~, P2, " " ,  Pr } be the set of minimal primes of A. Then for all 

i = 1 , 2 , . . . , r  

( i )  d(A iP,) = d(A ), 

(ii) there exist z, ~ N +, such that 

~ z ,  r k ( A / P , )  = rk B. 
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(i) follows from 3.6 (i) and 2.6 (i). 

(ii) By 2.7, 3.5-3.7, the set S of regular elements of A is contained in the set of 

regular elements of B and is an Ore subset for both A and B. Let N be the 

nilradical of A. By 2.7, M: = S - ' A  has nilradical 2r = S - I N  and is an Artinian 

subring of the prime ring ~ : = S-1B with identity 1 E ~r If P is a minimal prime 

of A then by 2.4 we have P n S = 0 .  Conversely if Q is not a minimal prime of 

A, then as in the proof of 2.6 (iii) it follows that d ( A / Q ) < d ( A )  and so 

Q n S ~  Q by 2.8. Then by [3], 2.10: {O,: = S-1P~: i = 1 , 2 , . . . ,  r} is the set of 

primes of J and FractA/P~ = ~/Q~, up to isomorphism. Then (ii) follows 

from 3.8. 

REMARK. Applying (i) to the example of 3.1 establishes a result which has 

long been suspected. Namely for the annihilator I of an induced module the 

quotients of U(g) defined by the minimal primes containing I have all the same 

Gelfand-Kiril lov dimension. 
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